Mu-Tien, Lee
#install.packages("")
library(knitr)
library(rmarkdown)
library(MuMIn)
library(tidyverse)
library(caret)
library(corrplot)
library(readxl)
library(caret)
library(ggiraphExtra)
library(knitr)
library(ggplot2)
library(ggpubr)
library(rpart.plot)
library(rpart)
library(DT)
#read in hour data
HourData <- read.csv("hour.csv")
HourData<- HourData %>% select(-casual, -registered)
HourData$yr <- as.factor(HourData$yr)
HourData$holiday <- as.factor(HourData$holiday)
HourData$workingday <- as.factor(HourData$workingday)
#filter data by weekday
HourData <-HourData %>% filter(weekday==params$w)
#showing data
HourData <-HourData %>% select(-weekday, -workingday,-instant)
tbl_df(HourData)
## # A tibble: 2,479 x 12
## dteday season yr mnth hr holiday weathersit temp atemp hum
## <chr> <int> <fct> <int> <int> <fct> <int> <dbl> <dbl> <dbl>
## 1 2011-~ 1 0 1 0 0 1 0.22 0.197 0.44
## 2 2011-~ 1 0 1 1 0 1 0.2 0.167 0.44
## 3 2011-~ 1 0 1 4 0 1 0.16 0.136 0.47
## 4 2011-~ 1 0 1 5 0 1 0.16 0.136 0.47
## 5 2011-~ 1 0 1 6 0 1 0.14 0.106 0.5
## 6 2011-~ 1 0 1 7 0 1 0.14 0.136 0.5
## 7 2011-~ 1 0 1 8 0 1 0.14 0.121 0.5
## 8 2011-~ 1 0 1 9 0 1 0.16 0.136 0.43
## 9 2011-~ 1 0 1 10 0 1 0.18 0.167 0.43
## 10 2011-~ 1 0 1 11 0 1 0.2 0.182 0.4
## # ... with 2,469 more rows, and 2 more variables: windspeed <dbl>, cnt <int>
#Separate dataset into train (70%) and test (30%) data set
set.seed(1997)
train <- sample(1:nrow(HourData), size = nrow(HourData)*0.7)
test <- dplyr::setdiff(1:nrow(HourData), train)
HourDataTrain <- HourData[train, ]
HourDataTest <- HourData[test, ]
Here I will show you some summary of my training dataset.
# plot the histogram of rental count
hist <- ggplot(data=HourDataTrain, aes(x=cnt))+geom_histogram(binwidth = 20, aes(color=yr))
hist <-hist+labs(title="Histogram of the retal count", x="rental count")
hist <-hist+scale_fill_discrete(labels=c(2011,2012))
hist
#prin out summary table for tempature humidity and windspeed
sum <- HourDataTrain%>% select(c(temp, atemp, hum, windspeed))
kable(apply(sum, 2,summary), caption="Numeric Summary for weather measurement")
temp | atemp | hum | windspeed | |
---|---|---|---|---|
Min. | 0.0200000 | 0.0303000 | 0.2100000 | 0.0000000 |
1st Qu. | 0.3400000 | 0.3333000 | 0.4900000 | 0.1045000 |
Median | 0.5200000 | 0.5000000 | 0.6400000 | 0.1940000 |
Mean | 0.4961614 | 0.4763708 | 0.6329395 | 0.1894927 |
3rd Qu. | 0.6600000 | 0.6212000 | 0.7800000 | 0.2537000 |
Max. | 0.9200000 | 0.8485000 | 1.0000000 | 0.6866000 |
#plot the boxplot of tempature humidity and windspeed (not genralized amount)
#plot base
boxplot <- ggplot(data = HourDataTrain, aes(x=season))
#adding 4 variables
tem <-boxplot+geom_boxplot(aes(y=temp*41, group=season))+labs(y="Tempature (c)", title = "boxplot for weather measurement")
fetem <-boxplot+geom_boxplot(aes(y=atemp*50, group=season))+labs(y="Feeling Tempature (c)")
hum <-boxplot+geom_boxplot(aes(y=hum*100, group=season))+labs(y="Humidity")
wind <-boxplot+geom_boxplot(aes(y=windspeed*67, group=season))+labs(y="Wind Speed")
#combine 4 plots into 1
ggarrange(tem, fetem, hum , wind, ncol = 2, nrow = 2)
# plot the count distribution among time and weather
# by time
barplot1<-ggplot(data = HourDataTrain, aes(x=hr))+geom_col(aes(y=cnt, fill=yr))+facet_wrap(~mnth)
barplot1 <- barplot1+labs(x="time", y="Rental Count", title="Retal count distribution by month" )
barplot1+scale_fill_discrete(name="year", labels=c(2011,2012))
# by weather
barplot2 <-ggplot(data = HourDataTrain, aes(x=weathersit))+geom_col(aes(y=cnt, fill=yr))+facet_wrap(~mnth)
barplot2 <- barplot2+labs(x="Weather situation, 1: clear day, 2: misty day, 3:rain or snow", y="Rental Count", title="Retal count distribution by month" )
barplot2+scale_fill_discrete(name="year", labels=c(2011,2012))
Here I use two different method to train my model. First method is using a tree-based models with leave one out cross validation. For the second method, I use the boosted tree model with cross validation. Both two training are done using the train
function from caret
package. The data was cantered and scaled before training.
Since our respons variable is continuous. I use the regression tree model to training my data. The method= "rpart"
was used in train
function
Moreover, because I want to use the leave-one-out cross validation for this training, therefore,the method= "LOOCV"
was used in trainControl
.
We can adjust the grid parameter by ourselves. Since the default result shows that cp
should be very small to have a lowest RMSE. I set a range [0.0001,0.0005] to fit for every weekday.
Something to notice, because the cp
is too small, when I draw my regression tree, it seems like a mess.
# set up training control, using leave one out cross validation.
set.seed(615)
trctrl <- trainControl(method = "LOOCV", number = 1)
# getModelInfo("rpart")
# training using regression tree models with cp in [0.0001,0.0005]
# since the cp seems have to be really small when I used the default cp to train
model1 <- cnt~season+yr+mnth+hr+holiday+weathersit+temp+atemp+hum+windspeed
RegTree_fit1 <- train(model1, data = HourDataTrain, method = "rpart",
trControl=trctrl,
preProcess = c("center", "scale"),
tuneGrid=expand.grid(cp=seq(0.0001,0.0005,0.00004))
)
# show the training result
RegTree_fit1
## CART
##
## 1735 samples
## 10 predictor
##
## Pre-processing: centered (10), scaled (10)
## Resampling: Leave-One-Out Cross-Validation
## Summary of sample sizes: 1734, 1734, 1734, 1734, 1734, 1734, ...
## Resampling results across tuning parameters:
##
## cp RMSE Rsquared MAE
## 0.00010 74.41616 0.8294464 43.44368
## 0.00014 74.68805 0.8281557 44.10587
## 0.00018 74.66864 0.8282416 44.15918
## 0.00022 74.69121 0.8281267 44.11556
## 0.00026 74.63884 0.8282762 44.10331
## 0.00030 74.79066 0.8275371 44.69143
## 0.00034 74.78446 0.8275581 44.66231
## 0.00038 74.76520 0.8276521 44.63508
## 0.00042 74.50287 0.8287256 44.49473
## 0.00046 74.40986 0.8291284 44.37951
## 0.00050 74.55470 0.8285169 44.60506
##
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was cp = 0.00046.
# plot the RMSE of selected cp
plot(RegTree_fit1)
# plot my final tree model
rpart.plot(RegTree_fit1$finalModel)
Here I want to training my data using boosted tree model. The method= "gbm"
was used in train
function
Because I want to use thecross validation for this training, therefore,the method= "cv"
was used in trainControl
.
We can adjust the grid parameter by ourselves. I set a range of number of tree [100,1250] and interaction 5~11 to fit for every weekday.
# set up training control, using cross validation with 10 folder
set.seed(615)
trctrl <- trainControl(method = "cv", number = 10)
# training using boosted tree models with boosting interation in [700,1250] and try max tree depth 5~9
model2 <- cnt~season+yr+mnth+hr+holiday+weathersit+temp+atemp+hum+windspeed
RegTree_fit2 <- train(model2, data = HourDataTrain, method = "gbm",
trControl=trctrl,
preProcess = c("center", "scale"),
tuneGrid=expand.grid(n.trees=seq(100,1250,25),
interaction.depth=5:11,
shrinkage=0.1, n.minobsinnode=10)
)
# show the training result of boosted tree
RegTree_fit2$bestTune
## n.trees interaction.depth shrinkage n.minobsinnode
## 274 1050 10 0.1 10
# plot the RMSE of different parameters
plot(RegTree_fit2)
Using the best boosted tree model to testing the data.
# predict use predict function
tree_pred <- predict(RegTree_fit1, newdata = HourDataTest)
#Calculate the Root MSE
RMSE_tree<- sqrt(mean((tree_pred-HourDataTest$cnt)^2))
label <- paste0("RMSE =", RMSE_tree)
# plot the prediction
count <- data.frame(true_count=HourDataTest$cnt,prediction=tree_pred )
predPlot <- ggplot(data=count, aes(x=true_count,y=prediction))
predPlot <- predPlot+labs(title="Prediction V.s. True Count using tree-base model")+geom_point()
predPlot <- predPlot+geom_smooth(color="orange")+geom_abline(aes(intercept=0,slope=1), color="blue")
predPlot <- predPlot+geom_text(x=200, y=600,label=label, color="brown")
predPlot
# predict use predict function
boosted_pred <- predict(RegTree_fit2, newdata = HourDataTest)
#Calculate the Root MSE
RMSE_boosted <- sqrt(mean((boosted_pred-HourDataTest$cnt)^2))
lab <- paste0("RMSE =", RMSE_boosted)
# plot the prediction
count2 <- data.frame(True_count=HourDataTest$cnt,prediction=boosted_pred )
pred_plot <- ggplot(data=count2, aes(x=True_count,y=prediction))
pred_plot <- pred_plot+labs(title="Prediction V.s. True Count using boosted model")+geom_point()
pred_plot <- pred_plot+geom_smooth(color="orange")+geom_abline(aes(intercept=0,slope=1), color="blue")
pred_plot <- pred_plot+geom_text(x=200, y=600,label=lab, color=" brown")
pred_plot